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Abstract
The generalized sine-Gordon (sG) equation was derived as an integrable
generalization of the sG equation. In this paper, we develop a direct method for
solving the generalized sG equation without recourse to the inverse scattering
method. In particular, we construct multisoliton solutions in the form of
parametric representation. We obtain a variety of solutions which include kinks,
loop solitons and breathers. The properties of these solutions are investigated
in detail. We find a novel type of solitons with a peculiar structure that the
smaller soliton travels faster than the larger soliton. We also show that the
short-pulse equation describing the propagation of ultra-short pulses is reduced
from the generalized sG equation in an appropriate scaling limit. Subsequently,
the reduction to the sG equation is briefly discussed.

PACS numbers: 02.30.Ik, 02.30.Jr
Mathematics Subject Classification: 35Q51, 37K10, 37K40

1. Introduction

We consider the following generalized sine-Gordon (sG) equation:

utx = (1 + ν∂2
x

)
sin u, (1.1)

where u = u(x, t) is a scalar-valued function, ν is a real parameter, ∂2
x = ∂2/∂x2 and the

subscripts t and x appended to u denote partial differentiation. The generalized sG equation has
been derived for the first time in [1] using bi-Hamiltonian methods. Quite recently, equation
(1.1) with ν < 0 was shown to be a completely integrable partial differential equation (PDE)
[2]. Indeed, constructing a Lax pair associated with it, the initial value problem of the
equation was solved for decaying initial data. In the process, the Riemann–Hilbert formalism
was developed to obtain eigenfunctions of the Lax pair. Soliton solutions are obtainable in
principle, but their derivation needs a very complicated procedure. Although some qualitative
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features of traveling-wave solutions are discussed in a different context from the Riemann–
Hilbert formalism, explicit expressions of solutions are not available as yet.

The purpose of this paper is to obtain exact solutions of equation (1.1) with ν < 0 and
discuss their properties. We consider real and nonperiodic solutions. In our analysis, we take
ν = −1 without loss of generality. The exact method of solution used here is the bilinear
transformation method which is a very powerful tool in obtaining special solutions of soliton
equations [3, 4]. The method has wide applications ranging from continuous to discrete soliton
equations. The central problem in the bilinear formalism is the construction of tau functions
which are introduced through dependent variable transformations.

This paper is organized as follows. In section 2, we develop an exact method of solution.
Specifically, we use a hodograph transformation to transform the equation under consideration
into a more tractable form. The transformed equation is further put into a system of bilinear
equations by introducing appropriate dependent variable transformations. We then construct
explicit solutions of the bilinear equations by means of a standard procedure in the bilinear
formalism. The multisoliton solutions are obtained in the form of parametric representation.
In section 3, we describe properties of solutions. First, we consider 1-soliton solutions
which include kink and loop soliton solutions as well as a new type of multivalued functions.
Throughout this paper, we use the term ‘soliton’ as a generic name of elementary solutions such
as kink, loop soliton and breather solutions. A novel feature of regular kink solutions is found
which has never been seen in the sG kinks. Next, the 2-soliton solutions are discussed. We
address the kink–kink and kink–loop soliton solutions together with the 1-breather solution.
Last, we explore the general multisoliton solutions. Our particular concern is the multikink
solution for which the large-time asymptotic is derived and the associated formula for the phase
shift is obtained. A recipe for constructing the multibreather solutions is briefly described.
As examples of the multisoliton solutions, we present a solution describing the interaction
between a soliton and a breather as well as a 2-breather solution which are reduced from the 3-
and 4-soliton solutions, respectively. In section 4, we point out a close relationship between the
generalized sG equation and the short-pulse equation which models the propagation of ultra-
short optical pulses. We show that the generalized sG equation is reduced to the short-pulse
equation by taking an appropriate scaling limit. The parametric multiloop soliton solution
of the short-pulse equation presented in [5] is reproduced from the corresponding one for
the generalized sG equation. The similar limiting procedure is also applied to the formula
for the phase shift. Subsequently, the reduction of the generalized sG equation to the sG
equation is discussed shortly. Section 5 is devoted to conclusions. In appendix A, we show
that the tau functions for the multisoliton solutions obtained in section 3 satisfy a system of
bilinear equations. The proof is carried out by means of an elementary method using various
formulas for determinants. In appendix B, we derive the 1-soliton solutions by an alternative
method and demonstrate that they reproduce the corresponding 1-soliton solutions obtained in
section 3.

2. Exact method of solution

2.1. Hodograph transformation

We introduce the new dependent variable r in accordance with the relation

r2 = 1 + u2
x, (r > 0), (2.1)

to transform equation (1.1) with ν = −1 into the form

rt + (r cos u)x = 0. (2.2)
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We then define the hodograph transformation (x, t) → (y, τ ) by

dy = r dx − r cos u dt, dτ = dt. (2.3)

The x and t derivatives are then rewritten in terms of the y and τ derivatives as

∂

∂x
= r

∂

∂y
,

∂

∂t
= ∂

∂τ
− r cos u

∂

∂y
. (2.4)

With the new variables y and τ , (2.1) and (2.2) are recast into the form

r2 = 1 + r2u2
y, (2.5)(

1

r

)
τ

− (cos u)y = 0, (2.6)

respectively. Further reduction is possible if one defines the variable φ by

uy = sin φ, φ = φ(y, τ )

(
−π

2
< φ <

π

2
, mod 2π

)
. (2.7)

It follows from (2.5) and (2.7) that

1

r
= cos φ. (2.8)

Substituting (2.7) and (2.8) into equation (2.6), we find

φτ = sin u. (2.9)

If we eliminate the variable φ from (2.7) and (2.9), we obtain a single PDE for u

uτy√
1 − u2

y

= sin u. (2.10)

Similarly, elimination of the variable u gives a single PDE for φ :

φτy√
1 − φ2

τ

= sin φ. (2.11)

By inverting the relationship (2.4) and using (2.8), the equation that determines the inverse
mapping (y, τ ) → (x, t) is found to be governed by the system of linear PDEs for x = x(y, τ )

xy = cos φ, (2.12a)

xτ = cos u. (2.12b)

Note that the integrability of the system of equations (2.12) is assured by (2.7) and (2.9).
A sequence of transformations described above are almost the same as those employed for

solving the short-pulse equation [5]. The underlying idea is to transform the original equation
to the (possibly) integrable equation. In the case of the short-pulse equation, the transformed
equation is the sG equation whereas in the present case, the corresponding equations are (2.10)
and (2.11). The soliton solutions of the latter equations will be constructed here for the first
time. Given u and φ, the most difficult problem is how to integrate the system of equations
(2.12). This becomes the core part of the present paper and will be resolved by theorem 2.1.

3
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2.2. Bilinear formalism

Here, we develop a method for solving a system of PDEs (2.7) and (2.9). We use the bilinear
transformation method [3, 4]. Let σ and σ ′ be solutions of the sG equation:

στy = sin σ, σ = σ(y, τ ), (2.13a)

σ ′
τy = sin σ ′, σ ′ = σ ′(y, τ ). (2.13b)

We then put

u = 1
2 (σ + σ ′), (2.14a)

φ = 1
2 (σ − σ ′). (2.14b)

In terms of σ and σ ′, equations (2.7) and (2.9) can be written as

1
2 (σ + σ ′)y = sin 1

2 (σ − σ ′), (2.15a)

1
2 (σ − σ ′)τ = sin 1

2 (σ + σ ′). (2.15b)

It should be remarked that the system of PDEs (2.15) constitutes a Bäcklund
transformation of the sG equation with a Bäcklund parameter taken to be 1 [6]. The real-valued
solutions of the sG equations (2.13) can be put into the form [7–10]

σ = 2i ln
f ∗

f
, (2.16a)

σ ′ = 2i ln
g∗

g
, (2.16b)

where f ∗ and g∗ denote the complex conjugate of f and g, respectively. The tau functions
f and g play a central role in our analysis. They are fundamental quantities in constructing
solutions. For soliton solutions, they satisfy the following bilinear equations [7]:

DτDyf · f = 1
2 (f 2 − f ∗2

), (2.17a)

DτDyg · g = 1
2 (g2 − g∗2

), (2.17b)

where the bilinear operators Dτ and Dy are defined by

Dm
τ Dn

yf · g = (∂τ − ∂τ ′)m(∂y − ∂y ′)nf (τ, y)g(τ ′, y ′)|τ ′=τ,y ′=y (m, n = 0, 1, 2, . . .).

(2.18)

Now, we seek solutions of equations (2.7) and (2.9) of the form

u = i ln
F ∗

F
, (2.19a)

φ = i ln
G∗

G
, (2.19b)

where F and G are new tau functions. It turns out from (2.14), (2.16) and (2.19) that

2u = σ + σ ′ = 2i ln
f ∗g∗

fg
= 2i ln

F ∗

F
, (2.20a)

4
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2φ = σ − σ ′ = 2i ln
f ∗g
fg∗ = 2i ln

G∗

G
. (2.20b)

By taking into account (2.20), we may assume the following relations among the tau
functions f, g, F and G:

F = fg, (2.21a)

G = fg∗. (2.21b)

The above expressions lead to an important relation

F ∗F = G∗G. (2.22)

Substituting (2.19) into equations (2.7) and (2.9) and using (2.22), we see that F and G satisfy
a system of bilinear equations

DyF
∗ · F = − 1

2 (G2 − G∗2
), (2.23a)

DτG
∗ · G = − 1

2 (F 2 − F ∗2
). (2.23b)

Thus, the problem under consideration is reduced to obtain solutions of equations (2.23)
subjected to condition (2.22). After some trials, however, we found that this procedure for
constructing solutions is difficult to perform. Hence, we employ an alternative approach. To
begin with, we impose the following bilinear equations for f and g which turn out to be the
starting point in our analysis:

Dyf · g∗ = 1
2 (fg∗ − f ∗g), (2.24a)

Dτf · g = 1
2 (fg − f ∗g∗). (2.24b)

With (2.24) at hand, the following proposition holds.

Proposition 2.1. If f and g satisfy the bilinear equations (2.24), then the tau functions F
and G defined by (2.21) satisfy the bilinear equations (2.23).

Proof. First, we prove (2.23a). We substitute (2.21a) into the left-hand side of (2.23a) and
rewrite it in terms of the bilinear operator to obtain

DyF
∗ · F = −(Dyf · g∗)f ∗g + (Dyf

∗ · g)fg∗. (2.25)

By virtue of (2.24a), the right-hand side of (2.25) becomes −(1/2){(fg∗)2 − (f ∗g)2} which
is equal to the right-hand side of (2.23a) by (2.21b). The proof of (2.23b) can be done in the
same way by using (2.24b). �

2.3. Parametric representation

We demonstrate that the solution of equation (1.1) with ν = −1 admits a parametric
representation. The following relation is crucial to integrate (2.12).

Proposition 2.2. cos φ is expressed in terms of f and g as

cos φ = 1 +

(
ln

g∗g
f ∗f

)
y

. (2.26)

5
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Proof. Using (2.24a), one obtains(
ln

g∗g
f ∗f

)
y

= −Dyf · g∗

fg∗ − Dyf
∗ · g

f ∗g

= 1

2

(fg∗)2 + (f ∗g)2

f ∗fg∗g
− 1. (2.27)

On the other hand, it follows from (2.19b) and (2.21b) that

cos φ = 1

2

(
G

G∗ +
G∗

G

)

= 1

2

(fg∗)2 + (f ∗g)2

f ∗fg∗g
. (2.28)

Relation (2.26) follows immediately by comparing (2.27) and (2.28). �

Integrating (2.12a) coupled with (2.26) by y, we obtain the expression of x

x = y + ln
g∗g
f ∗f

+ d(τ ), (2.29)

where d is an integration constant which depends generally on τ . Expression (2.29) now leads
to our main result.

Theorem 2.1. The real-valued solution of equation (1.1) with ν = −1 can be written by the
parametric representation

u(y, τ ) = i ln
f ∗g∗

fg
, (2.30a)

x(y, τ ) = y + τ + ln
g∗g
f ∗f

+ y0, (2.30b)

where the tau functions f and g satisfy both (2.17) and (2.24) simultaneously and y0 is an
arbitrary constant independent of y and τ .

Proof. Expression (2.30a) for u is a consequence of (2.19a) and (2.21a). To prove (2.30b),
we substitute (2.29) into (2.12b) and obtain the relation

cos u =
(

ln
g∗g
f ∗f

)
τ

+ d′(τ ). (2.31)

The left-hand side of (2.31) can be expressed by f and g in view of (2.30a) whereas the
right-hand side is modified by using (2.24b). After a few calculations, we find that most
terms are cancelled, leaving the equation d′(τ ) = 1. Integrating this equation, one obtains
d(τ ) = τ + y0, which, substituted into (2.29), gives expression (2.30b) for x. �

The parametric solution (2.30) would produce in general a multi-valued function as
happened in the case of the short-pulse equation [5]. To derive a criterion for single-valued
functions, we calculate ux with use of (2.7) and (2.8) and obtain

ux = ruy = tan φ. (2.32)

Thus, if the inequality −π/2 < φ < π/2 (mod π) holds for all y and τ , then u becomes a
regular function of x and t. By virtue of the identity

i ln
G∗

G
= 2 tan−1

(
ImG

ReG

)
, (2.33)

6
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as well as the relation (2.21b), the above condition for regularity can be written as

−1 <
Im(fg∗)
Re(fg∗)

< 1. (2.34)

In the case of 1-soliton solutions discussed in the next section, the above condition is found
explicitly in terms of the parameters characterizing solutions.

2.4. Multisoliton solutions

The last step in constructing solutions is to find the tau functions f and g for the sG equation
which satisfy simultaneously the bilinear equations (2.24). The following theorem establishes
this purpose.

Theorem 2.2. The tau functions f and g given below satisfy both the bilinear forms (2.17)
of the gG equation and the bilinear equations (2.24)

f =
∑

μ=0,1

exp

⎡
⎣ N∑

j=1

μj

(
ξj +

π

2
i
)

+
∑

1�j<k�N

μjμkγjk

⎤
⎦ , (2.35a)

g =
∑

μ=0,1

exp

⎡
⎣ N∑

j=1

μj

(
ξj − 2dj +

π

2
i
)

+
∑

1�j<k�N

μjμkγjk

⎤
⎦ , (2.35b)

where

ξj = pjy +
1

pj

τ + ξj0 (j = 1, 2, . . . , N), (2.36a)

eγjk =
(

pj − pk

pj + pk

)2

(j, k = 1, 2, . . . , N; j �= k), (2.36b)

e−2dj = 1 − pj

1 + pj

(j = 1, 2, . . . , N). (2.36c)

Here, pj and ξj0 are arbitrary real parameters satisfying the conditions pj �= pk for j �= k

and N is an arbitrary positive integer. The notation
∑

μ=0,1 implies the summation over all
possible combination of μ1 = 0, 1, μ2 = 0, 1, . . . , μN = 0, 1.

Proof. It has been shown that f and g given by (2.35a) and (2.35b) satisfy the bilinear
equations (2.17a) and (2.17b), respectively [7]. Thus, it is sufficient to prove that they satisfy
the bilinear equations (2.24). The proof is carried out by a lengthy calculation using various
formulas for determinants. It will be summarized in appendix A. �

2.5. Remark

The tau functions f and g given by (2.35) yield real-valued solutions since all the parameters
pj and ξj0 (j = 1, 2, . . . , N) are chosen to be real numbers. If one looks for breather solutions,
for example, one needs to introduce complex parameters (see sections 3.2.3, 3.3.2 and 3.3.3).
Even in this case, however, the analysis developed here can be applied as well without making
essential changes. Actually, we may use the tau functions f ′ and g′ instead of f ∗ and g∗,
respectively, where f ′ and g′ are obtained simply from f and g by replacing i by −i, but all

7
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the parameters in the tau functions are assumed to be complex numbers. The solutions of the
sG equations (2.13a) and (2.13b) can be written as σ = 2i ln(f ′/f ) and σ ′ = 2i ln(g′/g),
respectively, where the tau functions f, f ′, g and g′ satisfy the following systems of bilinear
equations:

DτDyf · f = 1
2 (f 2 − f ′2), DτDyf

′ · f ′ = 1
2 (f ′2 − f 2), (2.37a)

DτDyg · g = 1
2 (g2 − g′2), DτDyg

′ · g′ = 1
2 (g′2 − g2). (2.37b)

The bilinear equations corresponding to (2.24) are then given by

Dyf · g′ = 1
2 (fg′ − f ′g), Dτf · g = 1

2 (fg − f ′g′), (2.38a)

Dyf
′ · g = 1

2 (f ′g − fg′), Dτf
′ · g′ = 1

2 (f ′g′ − fg). (2.38b)

The expressions corresponding to (2.19)–(2.23) are obtained if one replaces the asterisk
appended to the tau functions by the prime. Under these modifications, the real-valued
solutions are produced if one imposes the conditions f ′ = f ∗ and g′ = g∗. See also an
analogous problem associated with breather solutions of the short-pulse equation [5].

3. Properties of solutions

The parametric representation (2.30) of the solution with the tau functions given by (2.35)
exhibit a variety of soliton solutions of equation (1.1) with ν = −1. As exemplified here,
solutions include both single-valued and multi-valued kinks, loop solitons and breathers.

3.1. 1-soliton solutions

The tau functions for the 1-soliton solutions are given by (2.35) with N = 1:

f = 1 + i eξ1 , ξ1 = p1y +
τ

p1
+ ξ10, (3.1a)

g = 1 + is1 eξ1 , s1 = 1 − p1

1 + p1
. (3.1b)

The parameters p1 and ξ10 are related to the amplitude and phase of the soliton, respectively
and ξ1 is a phase variable characterizing the parametric representation of the solution. It follows
from (2.21) and (3.1) that

F = 1 − s1 e2ξ1 + i(1 + s1) eξ1 , (3.2a)

G = 1 + s1 e2ξ1 + i(1 − s1) eξ1 . (3.2b)

Using (2.30) and (3.1), the parametric representation of the solution is written in the form

u = 2 tan−1(sinh ξ1 − p1 cosh ξ1) + π, (3.3a)

x = y + τ + ln

(
1 + p2

1

(1 + p1)2
− 2p1

(1 + p1)2
tanh ξ1

)
+ y0, (3.3b)

where we have imposed the boundary condition u(−∞, t) = 0. Note that if u solves
equation (1.1), then so do the functions ±u + 2πn (n : integer). To describe solutions

8
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of traveling-wave type like 1-soliton solutions, it is convenient to parameterize the solutions
in terms of the single variable ξ1. For this purpose, we rewrite (3.3b) as

X ≡ x + c1t + x0 = ξ1

p1
+ ln

(
1 + p2

1

(1 + p1)2
− 2p1

(1 + p1)2
tanh ξ1

)
+ y0, (3.4a)

where c1 is the velocity of the soliton given by

c1 = 1

p2
1

− 1, (3.4b)

and x0 = ξ10/p1. Observing the motion of the soliton in the original (x, t) coordinate system,
it travels to the left at the constant velocity c1 for p1 < 1 and to the right for p1 > 1. In
the critical case p1 = 1 for which c1 = 0, the soliton remains stationary. The profile of the
soliton changes drastically depending on values of the parameter p1. The singular nature of the
solution can be extracted conveniently from the information on the gradient of u with respect
to X. A calculation using (3.3a) and (3.4) gives

uX = 1

p1 cosh ξ1

1 − p1 tanh ξ1

tanh2 ξ1 − 1
p1

tanh ξ1 + 1−p2
1

2p2
1

. (3.5)

Let us now analyze solution (3.3). Using (3.1), condition (2.34) for single-valued function
becomes

−1 <
p1

cosh ξ1 − p1 sinh ξ1
< 1. (3.6)

In the following analysis, we assume p1 > 0 without loss of generality. If 0 < p1 < 1, then
(3.6) leads to the inequality

tanh2 ξ1 − 1

p1
tanh ξ1 +

1 − p2
1

2p2
1

> 0. (3.7)

One can see that inequality (3.7) always holds for 0 < p1 < 1√
2
. In this case, uX from (3.5)

becomes finite for arbitrary values of ξ1. On the other hand, if 1√
2

< p1 < 1, then the solution
exhibits singularities at two points X = X± ≡ X(ξ±) where

ξ± = tanh−1

[
1

2p1

(
1 ±

√
2p2

1 − 1
)]

. (3.8)

If p1 > 1, inequality (3.6) breaks down, giving rise to two singular points whose positions
are the same as X±. Unlike the second case, however, uX becomes zero at X = X0 ≡ X(ξ0)

with ξ0 = tanh−1(1/p1), as readily noticed from (3.5). The solution for the case p1 = 1
exhibits a peculiar behavior, which deserves a separate study. In view of these observations,
the solutions can be classified to four types according to values of p1, or equivalently c1 by
(3.4b), which we shall now investigate in detail.

Type 1. Regular kink: c1 > 1
(
0 < p1 < 1√

2

)
Figure 1 shows a typical profile of u as a function of X. It exhibits a profile of a 2π -kink
similar to the kink solution of the sG equation [6]. The propagation characteristic is, however,
different from that of the sG kink. To clarify this point, we rewrite uX from (3.5) as

uX = 2p1√
1 − p2

1

cosh(ξ1 − d1)

cosh2(ξ1 − d1) − p2
1

1−p2
1

, (3.9)

9
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-20 -10 0 10 20
X

0

1

2

3

4

5

6

7

u,
v

Figure 1. The profile of a regular kink u (solid line) and corresponding profile of v ≡ uX (broken
line). The parameter p1 is set to 0.4 and the parameter y0 is chosen such that the center position of
uX is at X = 0.

-6 -4 -2 0 2 4 6
X

0

1

2

3

4

5

6

7

u

Figure 2. The profile of a singular kink with the parameter p1 = 0.9.

where d1 = (1/2) ln[(1 + p1)/(1 − p1)]. It turns out from (3.9) that the amplitude A of uX is
given by

A =
2p1

√
1 − p2

1

1 − 2p2
1

. (3.10)

Eliminating p1 from (3.4b) and (3.10), we find the dependence of the amplitude on the velocity

c1 = 1

A2
(A2 + 2 + 2

√
A2 + 1). (3.11)

Relation (3.11) indicates that c1 is a monotonically decreasing function of A. In other words,
the smaller soliton travels faster than the larger soliton. This peculiar feature of the solution
has never been observed in the behavior of the sG kink solutions. The broken line in figure 1
plots the profile of v ≡ uX obtained from the kink solution depicted in the same figure. It
represents a soliton.

Type 2. Singular kink: 0 < c1 < 1
(

1√
2

< p1 < 1
)

The profile of the solution of type 2 is a 2π kink, but in the interval X− < X < X+, it becomes
a three-valued function. Figure 2 shows a typical profile of u as a function of X.

10
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Figure 3. The profile of a loop soliton with the parameter p1 = 2.0.
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Figure 4. The profile of a stationary solution with the parameter p1 = 1.0.

Type 3. Loop soliton: −1 < c1 < 0 (p1 > 1)

When compared with solutions of types 1 and 2, the solution for p1 > 1 exhibits a different
behavior. Indeed, we see from (3.3) and (3.5) that u(±∞) = 0 and uX(X0) = 0, respectively.
In addition, the solution has two singular points at X = X± such that X0 = (X+ + X−)/2.
Figure 3 shows a typical profile of u as a function of X. It represents a loop soliton and has a
symmetrical profile with respect to a straight line X = X0.

Type 4. Stationary solution: c1 = 1 (p1 = 0)

For this special value of the parameter p1, the parametric solution (3.3a) and (3.4a) takes the
form

u = −2 tan−1 e−ξ1 + π, (3.12a)

X = − ln(eξ1 + e−ξ1). (3.12b)

Remarkably, one can eliminate the variable ξ1 from this expression to give an explicit
solution

sin u = 2eX, (−∞ < X < − ln 2). (3.13)

The profile of u is illustrated in figure 4 as a function of X. Since c1 = 0, one has X = x +x0 by
(3.4a) and the solution becomes time-independent. Keeping this fact in mind, we can derive
solution (3.13) directly from the stationary version of equation (1.1) with ν = −1 :(

1 − d2

dx2

)
sin u = 0. (3.14)

11
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Integrating equation (3.14) under the boundary condition u(−∞) = 0 (mod π), we recover
(3.13).

The 1-soliton solutions presented above are of fundamental importance in constructing
general multisoliton solutions. In fact, the latter solutions will be shown to consist of any
combination of the former solutions. In appendix B, we shall derive the 1-soliton solutions by
means of an elementary method.

3.2. 2-soliton solutions

The tau functions for the 2-soliton solutions read from (2.35) with N = 2 in the form

f = 1 + i(eξ1 + eξ2) − δ eξ1+ξ2 , (3.15a)

g = 1 + i(s1 eξ1 + s2eξ2) − δs1s2eξ1+ξ2 , (3.15b)

where δ = (p1 − p2)
2/(p1 + p2)

2 and si = (1 − pi)/(1 + pi) (i = 1, 2).

The parametric solution (2.30) represents various types of solutions describing the
interaction of two solitons. Here, soliton means one of four types of solutions given in
section 3.1. In addition, the solution exhibits a breather solution when the two parameters p1

and p2 appear as a complex conjugate pair. Although a number of solutions yield according
to the combination of elementary solutions, we present three types of solutions, i.e. kink–kink
(or two-kink) solution and kink–loop soliton solution and a breather solution.

3.2.1. Kink–kink solution. The solid line in figures 5(a)–(c) exhibits the profile of solution
u for three different times. The solution represents the 4π -kink. In the same figure, we
depict v ≡ ux by the broken line, showing that it represents the interaction of two solitons.
The characteristic of the interaction process of two solitons is seen to be quite different from
that of the sG two solitons. Indeed, as evidenced from figure 5, a smaller soliton overtakes,
interacts and emerges ahead of a larger soliton. This reflects the fact that the velocity of
each soliton is a monotonically decreasing function of its amplitude (see (3.11)). After the
interaction, both solitons suffer phase shifts. The general formula for the phase shift arising
from the interaction of N solitons will be given by (3.26) below. In particular, for N = 2, it
reads

�1 = − 1

p1
ln

(
p1 − p2

p1 + p2

)2

− ln

(
1 + p2

1 − p2

)2

, (3.16a)

�2 = 1

p2
ln

(
p1 − p2

p1 + p2

)2

+ ln

(
1 + p1

1 − p1

)2

. (3.16b)

In the present example, formula (3.16) yields �1 = 4.55 and �2 = −2.42. A careful
inspection of (3.16) reveals that �1 > 0 and�2 < 0 for arbitrary values of p1 and p2 satisfying
the inequality 0 < p1 < p2 < 1/

√
2. This implies that the small soliton has moved forward

and the large soliton backward relative to the positions they would have reached if both solitons
had moved at constant velocities throughout the interaction process. The novel feature of the
2-soliton solution described above will appear here for the first time.

3.2.2. Kink–loop soliton solution. The next example is a solution u representing the
interaction of a 2π-kink and a loop soliton. See figures 6(a)–(c). Since the kink propagates
to the left and the loop soliton to the right, the solution describes the head-on collision unlike
the first example which exhibits an overtaking collision.

12
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Figure 5. The profile of a kink–kink solution u (solid line) and corresponding profile of v ≡ ux

(broken line) for three different times: (a) t = 0, (b) t = 2, (c) t = 3. The parameters are chosen
as p1 = 0.3, p2 = 0.6, ξ10 = −5, ξ20 = 0.

3.2.3. Breather solution. The breather solution can be interpreted as a bound state composed
of a kink and antikink pair in the sG model [6]. It has a localized structure which oscillates
with time and decays exponentially in space. In the generalized sG equation, the similar
breather solutions to the sG breathers will be shown to exist. The procedure for constructing
breather solutions is the same as that has been used for the short-pulse equation [5]. To be
more specific, let

13



J. Phys. A: Math. Theor. 43 (2010) 105204 Y Matsuno

-20 -10 0 10 20
x

0

2

4

6

8

u

t=0

-20 -10 0 10 20
x

0

2

4

6

8

u

t=4

-30 -20 -10 0 10
x

0

2

4

6

8

u

t=8

(a)

(b)

(c)

Figure 6. The profile of a kink–loop soliton solution u for three different times: (a) t = 0,
(b) t = 4, (c) t = 8. The parameters are chosen as p1 = 0.5, p2 = 2.0, ξ10 = 0, ξ20 = 25.

p1 = a + ib, p2 = a − ib = p∗
1, (a > 0, b > 0), (3.17a)

ξ10 = λ + iμ, ξ20 = λ − iμ = ξ ∗
1 , (λ, μ : real). (3.17b)

Then, f and g from (3.5) become

f = 1 + i(eξ1 + eξ∗
1 ) +

(
b

a

)2

eξ1+ξ∗
1 , (3.18a)

g = 1 + i(s1 eξ1 + s∗
1 eξ∗

1 ) + s1s
∗
1

(
b

a

)2

eξ1+ξ∗
1 , (3.18b)

where

ξ1 = θ + iχ, (3.18c)
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θ = a

(
y +

1

a2 + b2
τ

)
+ λ, (3.18d)

χ = b

(
y − 1

a2 + b2
τ

)
+ μ, (3.18e)

s1 = 1 − a2 − b2 − 2ib

(1 + a)2 + b2
≡ αe−iβ. (3.18f )

One can rewrite f and g in terms of the new variables defined by (3.18) as

f = 1 +

(
b

a

)2

e2θ + 2i eθ cos χ, (3.19a)

g = 1 + α2

(
b

a

)2

e2θ + 2iαeθ cos(χ − β). (3.19b)

The regular solution is obtainable if inequality (2.34) holds with f and g being given by
(3.19). An inspection reveals that if a/b is sufficiently small compared to 1, then the solution
would exhibit no singularities. However, it is not easy to extract the condition for the regularity
from (2.34) when compared with the corresponding problem for the breather solution of the
short-pulse equation [5]. We leave it to a future work. Instead, we present a regular solution by
a numerical example. In figures 7(a)–(c), the profile of v ≡ ux is depicted for three different
times. We can observe that the breather propagates to the left while changing its profile. The
propagation characteristic of the breather is similar to that of the short-pulse equation [5].

3.3. N-soliton solutions

The solutions including an arbitrary number of solitons can be contracted from (2.30) with the
tau functions (2.35). There exist a variety of solutions which are composed of any combination
of 1-soliton solutions presented in section 3.1. Here, we address the N-kink solutions and
M(=2N) breather solutions. For the former solutions, we investigate the asymptotic behavior
of solutions for large time and derive the formulas for the phase shift while for the latter ones,
we provide a recipe for constructing M breather solution from the N-soliton solution. As
examples, we present a solution describing the interaction between a soliton and a breather as
well as a two-breather solution.

3.3.1. N-kink solution. Let the velocity of the j th kink be cj = (1/p2
j

)−1, (0 < pj < 1/
√

2)

and order the magnitude of the velocity of each kink as c1 > c2 > · · · > cN . We observe
the interaction of N kinks in a moving frame with a constant velocity cn. We take the limit
t → −∞ with the phase variable ξn being fixed. We then find that f and g have the following
leading-order asymptotics

f ∼ δn exp

⎡
⎣ N∑

j=n+1

(
ξj +

π

2
i
)⎤⎦(1 + i eξn+δ

(−)
n

)
, (3.20a)

g ∼ δn exp

⎡
⎣ N∑

j=n+1

(
ξj − 2dj +

π

2
i
)⎤⎦(1 − i eξn−2dn+δ

(−)
n

)
, (3.20b)
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Figure 7. The profile of a breather solution v ≡ ux for three different times: (a) t = 0, (b) t = 5,
(c) t = 10. The parameters are chosen as p1 = 0.2 + 0.5 i, p2 = p∗

1 = 0.2 − 0.5 i, ξ10 = ξ∗
20 = 0.

where

δ(−)
n =

N∑
j=n+1

ln

(
pn − pj

pn + pj

)2

, (3.20c)

δn =
∏

n+1�j<k�N

(
pj − pk

pj + pk

)2

. (3.20d)

If we substitute (3.20) into (2.30), we obtain the asymptotic form of u and x:

u ∼ 2 tan−1

[
sinh

(
ξn − dn + δ(−)

n

)
cosh dn

]
+ π, (3.21a)

x ∼ y + τ − ln
1 + pn tanh

(
ξn − dn + δ(−)

n

)
1 − pn tanh

(
ξn − dn + δ

(−)
n

) − 4
N∑

j=n+1

dj − 2dn + y0. (3.21b)
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Note that we have used equivalent but different expressions for u and x from those given
by (3.3).

As t → +∞, the expressions corresponding to (3.21) are given by

u ∼ 2 tan−1

[
sinh

(
ξn − dn + δ(+)

n

)
cosh dn

]
+ π, (3.22a)

x ∼ y + τ − ln
1 + pn tanh

(
ξn − dn + δ(+)

n

)
1 − pn tanh

(
ξn − dn + δ

(+)
n

) − 4
n−1∑
j=1

dj − 2dn + y0, (3.22b)

with

δ(+)
n =

n−1∑
j=1

ln

(
pn − pj

pn + pj

)2

. (3.22c)

Let xc be the center position of the nth kink in the (x, t) coordinate system. It simply stems
from the relations ξn − dn + δ(±)

n = 0 by invoking (3.21a) and (3.22a). Thus, as t → −∞

xc + cnt + xn0 ∼ 1

pn

(
dn − δ(−)

n

)− 4
N∑

j=n+1

dj − 2dn + y0, (3.23)

where xn0 = ξn0/pn. As t → +∞, on the other hand, the corresponding expression turns out
to be

xc + cnt + xn0 ∼ 1

pn

(
dn − δ(+)

n

)− 4
n−1∑
j=1

dj − 2dn + y0. (3.24)

If we take into account the fact that all kinks propagate to the left, we can define the phase
shift of the nth kink as

�n = xc(t → −∞) − xc(t → +∞). (3.25)

Using (2.36c), (3.20c), (3.22c), (3.23) and (3.24), we find that

�n = 1

pn

⎧⎨
⎩

n−1∑
j=1

ln

(
pn − pj

pn + pj

)2

−
N∑

j=n+1

ln

(
pn − pj

pn + pj

)2
⎫⎬
⎭

+
n−1∑
j=1

ln

(
1 + pj

1 − pj

)2

−
N∑

j=n+1

ln

(
1 + pj

1 − pj

)2

(n = 1, 2, . . . , N). (3.26)

The first term on the right-hand side of (3.26) coincides with the formula for the phase shift
arising from the interaction of N kinks of the sG equation [7, 8, 10], whereas the second and
third terms appear as a consequence of the coordinate transformation (2.3).

3.3.2. M-breather solution. The construction of the M-breather solution can be done
following the similar procedure to that for the 1-breather solution developed in section 3.2.3.
Here, M(=2N) is a positive even number. To proceed, we specify the parameters in (2.35)
and (2.36) for the tau functions f and g as

p2j−1 = p∗
2j ≡ aj + ibj , aj > 0, bj > 0 (j = 1, 2, . . . ,M), (3.27a)

ξ2j−1,0 = ξ ∗
2j,0 ≡ λj + iμj (j = 1, 2, . . . , M), (3.27b)
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where aj and bj are positive parameters and λj and μj are real parameters, respectively. Then,
the phase variables ξ2j−1 and ξ2j are written as

ξ2j−1 = θj + iχj (j = 1, 2, . . . ,M), (3.28a)

ξ2j = θj − iχj (j = 1, 2, . . . ,M), (3.28b)

with

θj = aj (y + cj τ ) + λj (j = 1, 2, . . . , M), (3.28c)

χj = bj (y − cj τ ) + μj (j = 1, 2, . . . , M), (3.28d)

cj = 1

a2
j + b2

j

(j = 1, 2, . . . , M). (3.28e)

The parametric solution (2.30) with (3.27) and (3.28) describes multiple collisions of
M regular breathers provided that a certain condition is imposed on the parameters aj and
bj (j = 1, 2, . . . , M). Although it will be a difficult task to derive the condition for the
regularity through inequality (2.34), numerical examples confirm the existence of regular
multibreather solutions. See also an example of the 2-breather solution of the short-pulse
equation [5]. The asymptotic analysis for the M-breather solution can be performed following
the procedure for the N-kink solution, showing that the M-breather solution splits into M
single breathers as t → ±∞. The resulting asymptotic form is, however, too complicated to
write down and hence we omit the detail. One can refer to the similar analysis to that for the
M-breather solution of the short-pulse equation [5].

3.3.3. Soliton-breather solution. We take a 3-soliton solution with parameters pj and ξ0j

(j = 1, 2, 3). If one impose the conditions p2 = p∗
1, ξ02 = ξ ∗

01 as already specified for
the breather solution (see section 3.2.3) and 0 < p3 < 1/

√
2, ξ03(:real) for the regular kink

solution, then the expression of v ≡ ux would represent a solution describing the interaction
between a soliton and a breather. We choose p1, p2, ξ10 and ξ20 as those given by (3.17).
Then, the tau functions f and g from (2.35) become

f = 1 + i(eξ1 + eξ∗
1 + eξ3) +

(
b

a

)2

eξ1+ξ∗
1 − δ13 eξ1+ξ3 − δ∗

13 eξ∗
1 +ξ3 + i

(
b

a

)2

δ13δ
∗
13 eξ1+ξ∗

1 +ξ3 ,

(3.29a)

g = 1 + i(s1 eξ1 + s∗
1 eξ∗

1 + s3 eξ3) +

(
b

a

)2

s1s
∗
1 eξ1+ξ∗

1 − δ13s1s3 eξ1+ξ3 − δ∗
13s

∗
1 s3 eξ∗

1 +ξ3

+ i

(
b

a

)2

δ13δ
∗
13s1s

∗
1 s3 eξ1+ξ∗

1 +ξ3 , (3.29b)

where

s1 = 1 − a − ib

1 + a + ib
= s∗

2 , s3 = 1 − p3

1 + p3
, δ13 =

(
a − p3 + ib

a + p3 + ib

)2

= δ∗
23. (3.29c)

Figures 8(a)–(c) show a profile of v ≡ ux for three different times. We see that as time
evolves the soliton overtakes the breather whereby it suffers a phase shift. An asymptotic
analysis using the tau functions (3.29) leads to the formula for the phase shift of the soliton,
which we denote as �. Actually, one has for p2

3 < a2 + b2

� = 2

p3
ln

(p3 + a)2 + b2

(p3 − a)2 + b2
− 2 ln

(1 + a)2 + b2

(1 − a)2 + b2
(3.30a)
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Figure 8. The profile of a soliton–breather solution v ≡ ux for three different times: (a) t = 0,
(b) t = 15, (c) t = 25. The parameters are chosen as p1 = 0.2+0.5 i, p2 = p∗

1 = 0.2−0.5 i, p3 =
0.3, ξ10 = ξ20 = 0, ξ30 = −30.

and for a2 + b2 < p2
3

� = − 2

p3
ln

(p3 + a)2 + b2

(p3 − a)2 + b2
+ 2 ln

(1 + a)2 + b2

(1 − a)2 + b2
. (3.30b)

In the present example, formula (3.30a) gives � = 3.07.

3.3.4. Breather–breather solution. The breather–breather (or 2-breather) solution is reduced
from a 4-soliton solution following the procedure described in section 3.3.2. Figures 9(a)–(c)
show a profile of v ≡ ux for three different times. It represents a typical feature common to
the interaction of solitons, i.e. each breather recovers its profile after collision.

4. Reduction to the short-pulse and sG equations

The short-pulse equation was proposed as a model nonlinear equation describing the
propagation of ultra-short optical pulses in nonlinear media [11]. It may be written in an
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Figure 9. The profile of a breather–breather solution v ≡ ux for three different times: (a) t = 0,
(b) t = 40, (c) t = 70. The parameters are chosen as p1 = 0.1 + 0.5 i, p2 = 0.16 + 0.8 i, p3 =
p∗

1 = 0.1 − 0.5 i, p4 = p∗
2 = 0.16 − 0.8 i, ξ10 = ξ∗

30 = −10, ξ20 = ξ∗
40 = 0.

appropriate dimensionless form as

utx = u + 1
6 (u3)xx, (4.1)

where u = u(x, t) represents the magnitude of the electric field. Here, we demonstrate that the
generalized sG equation is reduced to the short-pulse equation by taking an appropriate scaling
limit combined with a coordinate transformation. The N-soliton solution of the short-pulse
equation as well as the formula of the phase shift can be derived from those of the generalized
sG equation. The reduction to the SG equation is shown to be established as well by another
scaling limit.

4.1. Reduction to the short-pulse equation

Let us first introduce new variable ū, x̄ and t̄ according to the relations

ū = u

ε
, x̄ = 1

ε
(x − t), t̄ = εt, (4.2)
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where ε is a small parameter and the quantities with bar are assumed to be order 1. Rewriting
the derivatives in terms of the new variables t̄ and x̄ and expanding sin εū in an infinite series
with respect to ε, we can develop equation (1.1) with ν = −1 to

ε

(
ūt̄ x̄ − 1

ε2
ūx̄x̄

)
= εū − ε3

6
ū3 + · · · − 1

ε2
∂2
x̄

(
εū − ε3

6
ū3 +

ε5

120
ū5 + · · ·

)
. (4.3a)

Note that the terms of order ε−1 are canceled. Thus, we have

εūt̄ x̄ = ε
(
ū + 1

6 (ū3)x̄x̄ )
)

+ O(ε3). (4.3b)

If we divide both sides of (4.3b) by ε and then take the limit ε → 0, we arrive at the
short-pulse equation (4.1) written by the new variables. It is noteworthy that the key relation
(2.1) has been used to transform the short-pulse equation into the sG equation and it is invariant
under the scaling (4.2). The similar scaling variables to (4.2) have been used to derive the
short-wave models of the Camassa–Holm and Degasperis–Procesi equations [12].

4.1.1. Scaling limit of the N-soliton solution. In order to perform the scaling limit of the
N-soliton solution, we find it appropriate to employ the following new variables in addition to
the variables defined by (4.2):

ȳ = y

ε
ȳ0 = y0

ε
, τ̄ = ετ, p̄j = εpj , ξ̄j0 = ξj0 (j = 1, 2, . . . , N).

(4.4)

If one rewrites the tau function f from (2.35a) in terms of these variables, one simply has

f = f̄ ≡
∑

μ=0,1

exp

⎡
⎣ N∑

j=1

μj

(
ξ̄j +

π

2
i
)

+
∑

1�j<k�N

μjμkγ̄jk

⎤
⎦ , (4.5a)

with

ξ̄j = p̄j ȳ +
τ̄

p̄j

+ ξ̄j0 (j = 1, 2, . . . , N), (4.5b)

eγ̄jk =
(

p̄j − p̄k

p̄j + p̄k

)2

(j, k = 1, 2, . . . , N; j �= k). (4.5c)

In proceeding to the limiting procedure for the tau function g, we need to retain terms up
to order ε. Thus, the expansion

exp

⎛
⎝−2

N∑
j=1

μjdj

⎞
⎠ =

N∏
j=1

(
1 − pj

1 + pj

)μj

∼ exp

⎛
⎝−π i

N∑
j=1

μj

⎞
⎠
⎛
⎝1 − 2ε

N∑
j=1

μj

p̄j

⎞
⎠ + O(ε2),

(4.6)

as well as the scaled variables (4.2) and (4.4), is substituted into (2.35b) to derive the expansion
of g:

g ∼
∑

μ=0,1

⎛
⎝1 − 2ε

N∑
j=1

μj

p̄j

⎞
⎠ exp

⎡
⎣ N∑

j=1

μj

(
ξ̄j − π

2
i

)
+

∑
1�j<k�N

μjμkγ̄jk

⎤
⎦ + O(ε2)

= f̄
∗ − 2εf̄

∗
τ̄ + O(ε2). (4.7)

21



J. Phys. A: Math. Theor. 43 (2010) 105204 Y Matsuno

Insertion of (4.2), (4.5) and (4.7) into (2.30a) gives

εū = i ln
f̄

∗
(f̄ − 2εf̄ τ )

f̄ (f̄
∗ − 2εf̄

∗
τ )

+ O(ε2). (4.8)

In the limit of ε → 0, (4.8) leads to the scaling limit of u

ū = 2i

(
ln

f̄
∗

f̄

)
τ̄

. (4.9)

Applying the similar procedure to (2.30b), we find

εx̄ = εȳ − 2ε(ln f̄
∗
f̄ )τ̄ + εȳ0 + O(ε2). (4.10)

It follows from (4.10) that

x̄ = ȳ − 2(ln f̄
∗
f̄ )τ̄ + ȳ0. (4.11)

Expressions (4.9) and (4.11) coincide with the parametric representation of the N-soliton
solution of the short-pulse equation [5].

4.1.2. Scaling limit of the phase shift. The scaling limit of formula (3.26) for the phase shift
can be derived easily. Indeed, if we define the new variable for the phase shift by �̄n = �n/ε

and substitute this expression and the scaled variable p̄j = εpj from (4.4) into (3.26), we find,
after taking the limit ε → 0, that

�̄n = 1

p̄n

⎧⎨
⎩

n−1∑
j=1

ln

(
p̄n − p̄j

p̄n + p̄j

)2

−
N∑

j=n+1

ln

(
p̄n − p̄j

p̄n + p̄j

)2
⎫⎬
⎭

+
n−1∑
j=1

4

p̄j

−
N∑

j=n+1

4

p̄j

, (n = 1, 2, . . . , N). (4.12)

This expression is just the corresponding formula for the short-pulse equation [5]. Note that
if all p̄j are real parameters such that p̄j �= p̄k for j �= k, then (4.12) gives the formula for the
phase shift resulting from the overtaking collisions of N loop solitons.

4.2. Reduction to the sG equation

The reduction to the sG equation is rather straightforward compared to the previous one for
the short-pulse equation. It turns out that the appropriate scaled variables are given by

ū = u, x̄ = εx, ȳ = εy, t̄ = t

ε
, τ̄ = τ

ε
,

p̄j = pj

ε
, ξ̄j0 = ξj0 (j = 1, 2, . . . , N). (4.13)

In terms of the variables (4.13), we can recast equation (1.1) to the sG equation ūt̄ x̄ = sin ū in
the limit of ε → 0. The parametric solution (2.30) reduces to the usual form of the N-soliton
solution of the sG equation, i.e. ū(x̄, t̄ ) = 2i ln(f̄

∗
/f̄ ) where f̄ is given by (4.5) with the

identification ȳ = x̄, τ̄ = t̄ . The phase shift is scaled by �̄n = ε�n. It is given by the first
term on the right-hand side of (4.12), reproducing the well-known formula derived by the
asymptotic analysis of the N-soliton solution of the sG equation [7, 8, 10].
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5. Conclusion

A direct approach employed in this paper constructs various types of soliton solutions such
as single- and multi-valued kinks, loop solitons and breathers. These elementary solutions
are combined to produce a variety of multisoliton solutions. As examples, we presented a
solution describing the interaction between a soliton and a breather as well as a 2-breather
solution. As far as solutions are concerned, one can observe that the generalized sG equation
has a rich structure compared with that of the sG equation. We also demonstrated that the
generalized sG equation is reduced to both the short-pulse and sG equations in appropriate
scaling limits. Another interesting issue is the generalized sG equation (1.1) with ν = 1 for
which the method of solution still remains open. One may apply a sequence of nonlinear
transformation similar to that used here to obtain solutions. Another direction to be worth
investigating is the periodic problem. The exact method of solution used here will work well
for constructing periodic solutions of equation (1.1). See [13, 14] for periodic solutions of the
short-pulse equation. These problems will be pursued in future works.

Note added in proof. After the acceptance of this paper for publication, the author noticed that equations (2.10) and
(2.11) have been initially derived by M D Kruskal [15]. The author thanks Dr Maxim Pavlov for bringing this useful
information to me.

Appendix A. Proof of theorem 2.2

In this appendix, we show that the tau functions f and g given, respectively, by (2.35a) and
(2.35b) satisfy the bilinear equations (2.24). First, we rewrite f and g in terms of determinants.
For this purpose, we use the formula [16]

∑
μ=0,1

exp

⎡
⎣ N∑

j=1

μjξj +
∑

1�j<k�N

μjμkγjk

⎤
⎦ = λN det

(
eζj δjk +

2pj

pj + pk

)
1�j,k�N

, (A.1)

where

ζj = ξj +
N∑

k=1
(k �=j)

γjk, λN = exp

⎛
⎝−

∑
1�j<k�N

γjk

⎞
⎠ , (A.2)

and δjk is Kronecker’s delta. Since numerical factors multiplied by f and g have no effects
on the proof of (2.24), we use the determinantal expression given on the right hand of (A.1)
instead of the finite sum. Furthermore, we shift the phase factor ξj0 by −∑N

k=1
(k �=j)

γjk so that

ζj = ξj . Consequently, we can express f and g by the following determinants:

f = det A ≡ |A|, A = (ajk)1�j,k�N, ajk = i eξj δjk +
2pj

pj + pk

, (A.3)

g = det B ≡ |B|, B = (bjk)1�j,k�N, bjk = i
1 − pj

1 + pj

eξj δjk +
2pj

pj + pk

. (A.4)

For later convenience, we introduce some notations as well as formulas for determinants.
Matrices and cofactors associated with any N × N matrix A = (ajk)1�j,k�N are defined as
follows:
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A(a; b) =

⎛
⎜⎜⎜⎝

a11 . . . a1N b1

...
. . .

...
...

aN1 . . . aNN bN

a1 . . . aN 0

⎞
⎟⎟⎟⎠ , (A.5)

A(a, b; c, d) =

⎛
⎜⎜⎜⎜⎜⎝

a11 . . . a1N c1 d1

...
. . .

...
...

...

aN1 . . . aNN cN dN

a1 . . . aN 0 0
b1 . . . bN 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (A.6)

Ajk = ∂|A|
∂ajk

, (A.7)

Here, Ajk is the cofactor of ajk and a, b, c and d are N-dimensional vectors, a = (a1, a2, . . . , aN)

for example. The following formulas are used frequently in the present analysis [17]:

∣∣∣∣∣∣∣∣∣

a11 . . . a1N x1

...
. . .

...
...

aN1 . . . aNN xN

y1 . . . yN z

∣∣∣∣∣∣∣∣∣
= |A|z −

N∑
j,k=1

Ajkxjyk, (A.8)

|A| =

∣∣∣∣∣∣∣∣∣

a11 − 1 . . . a1N − 1 1
...

. . .
...

...

aN1 − 1 . . . aNN − 1 1
−1 . . . −1 1

∣∣∣∣∣∣∣∣∣
, (A.9)

|A(a + b; c + d)| = |A(a; c)| + |A(a; d)| + |A(b; c)| + |A(b; d)|, (A.10)

|A(a, b; c, d)||A| = |A(a; c)||A(b; d)| − |A(a; d)||A(b; c)|, (A.11)

N∑
j,k=1

(fj + gk)ajkAjk =
N∑

j=1

(fj + gj )|A|. (A.12)

Formula (A.11) is Jacobi’s identity and formula (A.12) follows from the expansion formulas
for determinants

∑N
k=1 aikAjk = δij |A|,∑N

k=1 akiAkj = δij |A|.
Let us now proceed to the proof. First, we modify the determinant |B|. We extract a

factor 2pj from the j th row of |B| and then extract a factor (1 + pj )
−1 from the j th column

(j = 1, 2, . . . , N). Subsequently, the determinant is modified by formula (A.9). We extract a
factor 1 − pj from the j th row of the resultant determinant and then multiply the j th row by
a factor 2pj (j = 1, 2, . . . , N). We then find

g = μ(|A| + 2|A(−1; q − 1)|) = μ(|A| + 2|A(1; 1)| − 2|A(1; q)|), (A.13)

where

q =
(

1

1 − p1
,

1

1 − p2
, . . . ,

1

1 − pN

)
, 1 = (1, 1, . . . , 1), μ =

∏N
j=1(1 − pj )∏N
j=1(1 + pj )

.

(A.14)
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The last line of (A.13) is a consequence of formula (A.10). If we use (A.9), we can rewrite
(A.13) as

g = μ(|Ā| + |Ā(1; 1)| − 2|Ā(1; q)|), (A.15)

where Ā is a skew-Hermitian matrix defined by

Ā = (ājk)1�j,k�N, ājk = i eξj δjk +
pj − pk

pj + pk

. (A.16)

Since |Ā|∗ = (−1)N |Ā|, the complex conjugate of g becomes

g∗ = (−1)Nμ(|Ā| − |Ā(1; 1)| + 2|Ā(q; 1)|). (A.17)

In view of the formulas |A| = |Ā| − |Ā(1; 1)| and |Ā(q; 1)| = |A(q; 1)| which follow from
(A.9), (A.17) reduces to

g∗ = (−1)Nμ(|A| + 2|A(q; 1)|). (A.18)

Similarly, one has

f ∗ = (−1)N(|A| + 2|A(1; 1)|). (A.19)

It follows from (A.13), (A.18) and (A.19) that
1
2 (fg∗ − f ∗g) = (−1)Nμ[(|A(1; q)| + |A(q; 1)|)|A|

+ 2(|A(1; q)| − |A(1; 1)|)|A(1; 1)| − 2|A||A(1; 1)|]. (A.20)

The next step is to calculate the right-hand side of (2.24a). First, applying the differential
rule of determinant to f , one has

fy =
N∑

j,k=1

∂ajk

∂y
Ajk =

N∑
j,k=1

(pj i eξj δjk)Ajk = 1

2

N∑
j,k=1

(pj + pk)

(
ajk − 2pj

pj + pk

)
Ajk.

(A.21)

By virtue of (A.8) and (A.12), we can recast (A.21) to

fy =
N∑

j=1

pj |A| + |A(1; p)|, (A.22)

where p = (p1, p2, . . . , pN). A similar calculation leads to

g∗
y =

N∑
j=1

pj |B|∗ + (−1)Nμ(|A(1; 1)| + |A(1; p)| − |A(q; 1)| − |A(q; p)| − 2|A(q, 1; p, 1)|).

(A.23)

It follows from (A.18), (A.22) and (A. 23) that

Dyg
∗ · f = (−1)Nμ[(|A(1; 1)| − |A(q; 1)| − |A(q; p)|

− 2|A(q, 1; p, 1)|)|A| − 2|A(1; p)||A(q; 1)|]. (A.24)

Using Jacobi’s identity (A.11) with a = q, b = 1, c = p, d = 1, (A.24) simplifies to

Dyg
∗ · f = (−1)Nμ[(|A(1; 1)| − |A(q; 1)| − |A(q; p)|)|A| − 2|A(q; p)||A(1; 1)|]. (A.25)

Referring to (A.20) and (A.25), we obtain

Dyg
∗ · f − 1

2 (fg∗ − f ∗g)

= (−1)Nμ(−|A(1; 1)| + |A(1; q))| − |A(q; p)|)(|A| + 2|A(1; 1)|). (A.26)
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Let P = −|A(1; 1)| + |A(1; q))| − |A(q; p)|. Applying (A.8) with qj = 1/(1 − pj ), P

becomes

P =
N∑

j,k=1

(1 − qj + pjqk)Ajk =
N∑

j,k=1

pj (pk − pj )

(1 − pj )(1 − pk)
Ajk. (A.27)

If we extract a factor pl from the lth row of Ajk (l = 1, 2, . . . , N; l �= j), P is modified as

P =
(

N∏
l=1

pl

)
N∑

j,k=1

pk − pj

(1 − pj )(1 − pk)
Âjk, (A.28)

where Âjk is the cofactor of the (j, k) element of the matrix Â defined by

Â = (âjk)1�j,k�N, âjk = ieξj

pj

δjk +
2

pj + pk

. (A.29)

Since Â is a symmetric matrix, Âjk = Âkj . Taking this relation into (A.28), we conclude that
P = 0. This completes the proof of (2.24a).

The proof of (2.24b) follows immediately from that of (2.24a) by a symmetry of the tau
functions. Indeed, if we exchange the variables y and τ and subsequently replace the parameter
pj by p−1

j (j = 1, 2, . . . , N), we then see that f from (A.3) is unchanged whereas g from
(A.4) is transformed to g∗. Thus, under this manipulation, the bilinear equation (2.24b) turns
out to the bilinear equation (2.24a), which completes the proof of (2.24b).

Appendix B. An alternative derivation of the 1-soliton solutions

The 1-soliton solutions take the form of traveling wave:

u = u(X), X = x + c1t + x0. (B.1)

Substituting this expression into equation (1.1) with ν = −1 and integrating the resultant
ordinary differential equation once with respect to X under the boundary condition u(−∞) =
0 (mod 2π), we obtain

u2
X = (c1 + 1)2 − (cos u + c1)

2

(cos u + c1)2
. (B.2)

Since u2
X � 0, we must require that the right-hand side of (B.2) is nonnegative which

imposes the condition on possible values of c1. One can see that this condition becomes
c1 � − cos2(u/2). To proceed, we define a new variable ξ by

X =
∫

(cos u + c1) dξ. (B.3)

Then, equation (B.2) reduces to

uξ = ±
√

(c1 + 1)2 − (cos u + c1)2. (B.4)

In accordance with values of c1, the solutions are classified to several types, which we shall
now discuss in detail.

(1) c1 > 0. In the case of c1 > 0, (B.4) is integrated through the change of the variable by
s = tan(u/2). After an elementary calculation, we obtain

s = ±
√

c1 + 1

c1

1

sinh
√

c1 + 1ξ
(B.5)
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and

cos u = 1 − s2

1 + s2
= 1 − 2(c1 + 1)

c1 sinh2 √
c1 + 1ξ + c1 + 1

. (B.6)

Substituting (B.6) into (B.3) and performing the integration with respect to ξ , we find

X = (c1 + 1)ξ − ln

√
c1 + 1 + tanh

√
c1 + 1ξ√

c1 + 1 − tanh
√

c1 + 1ξ
+ ξ0, (B.7)

where ξ0 is an integration constant. It follows from (B.5) and the boundary condition for
u that

u = 2 tan−1

(√
c1

c1 + 1
sinh

√
c1 + 1ξ

)
+ π. (B.8)

If we put

c1 = 1

p2
1

− 1 (0 < p1 < 1), ξ = p1(ξ1 − d1), d1 = tanh−1 p1,

ξ0 = ln

(
1 − p1

1 + p1

)
+

d1

p1
+ y0,

(B.9)

we can see that (B.7) and (B.8) coincide with (3.4) and (3.3a), respectively.
(2) −1 < c1 < 0. In this case, a calculation similar to case 1 gives

s = ±
√

c1 + 1

−c1

1

cosh
√

c1 + 1ξ
(B.10)

and

u = −2 tan−1

(√ −c1

c1 + 1
cosh

√
c1 + 1ξ

)
+ π, (B.11)

X = (c1 + 1)ξ − ln
1 +

√
c1 + 1 tanh

√
c1 + 1ξ

1 − √
c1 + 1 tanh

√
c1 + 1ξ

+ ξ0. (B.12)

If we put

c1 = 1

p2
1

− 1 (p1 > 1), ξ = p1(ξ1 − d1), d1 = tanh−1 1

p1
,

ξ0 = ln

(
p1 − 1

p1 + 1

)
+

d1

p1
+ y0,

(B.13)

we can reproduce the parametric solution (3.3a) and (3.4).
(3) c1 = 0. For the special value c1 = 0, integration of (B.3) and (B.4) can be performed

readily, giving rise to the solution

u = π

2
+ tan−1(sinh ξ), (B.14)

X = −ln(cosh ξ) + ξ0. (B.15)

It is easy to confirm that (B.14) and (B.15) coincide with (3.12a) and (3.12b), respectively.
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